S-plane Explained

A (P)REVIEW OF LAPLACE TRANFORMS AND
HOW TO USE THEM IN EE122
* Introduction
* Motivation for s-plane analysis
 When | say ‘s-plane,’ what do | mean?

 How to use the s-plane
— Circuit analysis/design: the Integrator
— Signal analysis/design: FM
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Motivation for s-plane analysis

* Understanding circuits in another
“domain” (the frequency domain)

— The more ways we can understand our
circuit, the better because...

* The time domain is hard for some things
— filtering = convolution (Doh!)

* The s-plane (often) makes things easier
— filtering = muiltiplication (Woohoo!)
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Math behind the s-plane

The Laplace Transform of a time-domain function gives us
a function of the complex frequency variable ‘s’

* The actual Laplace Transform™:

H(s)= f h(t)e ™ dt

— h(t) could be a signal, or a system
« Asasignal:  /&(¢) =sin(15¢+0.16)

A tem:
sasystem: (1) = v . (1)
vin (t)

— H(s): Laplace Transform of h(t)
— s =0 + jo: Complex Frequency Variable

R *: not necessary for EE122, but interesting (maybe)
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A note about transforms

* They make life easier (or should)

* |f you've taken E40 (and/or Math 53),
you have already used transforms

— E40 uses phasor analysis of linear circuits

« Complex impedances are just a tricky way of
getting around differential equations so that we
can take C as a “resistor” of value 1/ joC.
Indeed, they are simply Laplace (or Fourier)
transforms in disguise--as you will see.

— Math 53 uses Laplace Transforms to solve
differential equations
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What do | mean when | say ‘s-plane?’

ANSWER: THE REAL (c) AND IMAGINARY (®) PARTS OF s
ARE THE ‘X’ and ‘y’ ON A GRAPH

. Example

“Tent pole” plot of the |H(S)| '
magnitude of a

|
| 1
Chebychev filter’s A
response to inputs of & * M m "
complex frequency ‘s’ % : ';T-_k,.m.{.ﬁ
— ® is what you usually m* n.m.ﬁﬂﬂmﬁ*
| 5 ("imﬁ,“sfﬁw A

wﬂl
e h.:lg. =

think of as ‘radian

frequency’ (w=2mnf) -
— ¢ is decay rate* T g-axis
. " Notimportant for EE122, but used in stability analysis
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Why should | use the s-plane?

THIS IS THE SAME QUESTION AS:
‘WHY IS THE LAPLACE TRANSFORM USEFUL?’

» Turns differential equations (hard) into
algebraic equations (easy)

Av_ (t)+Bdv,, /dt=Cv, (t) & (A+sB)yv, , =Cv,
% C
out — H —
2 () A+ sB

in

* Turns convolution (hard) into multiplication
(easy)

S @) *h(t) =g(t) < F(s)H(s) = G(s)

g =
;.E EE122, Stanford University, Ross Venook



How to use s-plane analysis

« Examples to follow:

— Systems
« Simple RC circuit
* Integrator

— Signals

« Multiplication by a sinusoid: “Heterodyning”
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RC circuit (simple)

« Straight from EE122 lecture notes:

Derivation :
v (t)=v, (t)—iR

Vout __ 4g V0

REVIEW: FIRST ORDER LOW-PASS

|
oW | pue

i=Cdv,, /dt Vin S + g
v, .()+RCdv,, [dt=v, (1)

"Magic" (Laplace Transform)

v (1+sRC)=v,

You — py(5) = —

wg = 2rfc =%

v, 1+SRC_ -
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Integrator (slightly less simple)

AC Analysis : t:
. . 1 /|
Vout (t) — _(Zm (t) o lC (t))R2 Vo G1 ,.-.__T-LFE A v
iin (t) — Vin (t) / Rl - J’:+ i
i.(t)=—Cdv,, /dt -
Vout (t) — _(Vin (t) / Rl T Cdvout /dt)R2 Wy *—]
(Rl T SRIRZ C)Vout — _Vin RZ o ¥
Vout R, 11
>~ =H(s) =
v, ‘ ( )‘ SR R,C+ R, V2
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A familiar slide

POLES, ZEROS, AND CIRCUS TENTS?
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Another familiar slide...

POLES OF 2nd ORDER SYSTEMS

LPF{S) = A
S2 + 820 4+ w32 pde 4
Q X Ju
]
POLE DISTANCE FROM j @ AXIS = ;ﬂ—& - a
X
pile
FOR LEAST PEAKING
("MAXIMALLY-FLAT")
Pio=- Do + | 1 L
a=L 12=75q * P/ T ioqp
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A last familiar slide

EXAMPLE: 2|nd|| ORDER HIGH-PASS

‘o g2
HPHS = s a8 +11-4j]

is
i 4=
EFF
1]
. = a i 4
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Heterodyning (for FM radio)

 Motivation: “Base-band” txn is trouble
— Efficiency
« M4 Antenna for kHz ~ length > kilometers

— Interference
* All of the signals would muddle together

— Hence, we need distinct ‘carrier
frequencies’ (regulated by the FCC)
+ 92.3 MHz (KSJO)
> FM
+ 88.5 MHz (KQED)
» 1070 kHz (KNX) > y
« 710 kHz (KABC) A
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The “frequency domain”

 All base-band:

* Heterodyned




Back to heterodyning

Because convolution in the time domain is multiplication
in the frequency domain, when we multiply by a sinusoid
in the time domain, it convolves the frequency content of
our signal up to the frequency of the sinusoid.

(Whew! That was a mouthful)

A\

®
Base-band signal... T T
® 1/2 size
/
...convolved with pure tone... e
< A | db
®
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