S-plane Explained

A (P)REVIEW OF LAPLACE TRANFORMS AND HOW TO USE THEM IN EE122

- Introduction
- Motivation for s-plane analysis
- When I say 's-plane,' what do I mean?
- How to <u>use</u> the s-plane
 - Circuit analysis/design: the Integrator
 - Signal analysis/design: FM

Motivation for s-plane analysis

- Understanding circuits in another "domain" (the frequency domain)
 - The more ways we can understand our circuit, the better because...
- The time domain is hard for some things
 - filtering = convolution (Doh!)
- The s-plane (often) makes things easier
 - filtering = multiplication (Woohoo!)

Math behind the s-plane

The Laplace Transform of a time-domain function gives us a function of the complex frequency variable 's'

• The actual Laplace Transform*:

$$H(s) = \int_0^\infty h(t) e^{-st} dt$$

- h(t) could be a signal, or a system
 - As a signal: $h(t) = \sin(15t + 0.16)$
 - As a system: $h(t) = \frac{v_{out}(t)}{v_{in}(t)}$
- H(s): Laplace Transform of h(t)
- $-s = \sigma + j\omega$: Complex Frequency Variable

*: not necessary for EE122, but interesting (maybe)

A note about transforms

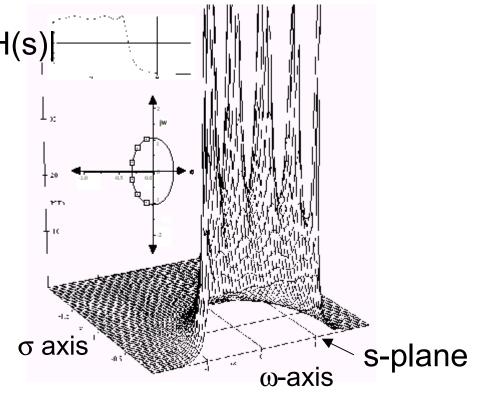
- They make life easier (or should)
- If you've taken E40 (and/or Math 53), you have already used transforms
 - E40 uses phasor analysis of linear circuits
 - Complex impedances are just a tricky way of getting around differential equations so that we can take C as a "resistor" of value 1/ jωC.
 Indeed, they are simply Laplace (or Fourier) transforms in disguise--as you will see.
 - Math 53 uses Laplace Transforms to solve differential equations

What do I mean when I say 's-plane?'

ANSWER: THE REAL (σ) AND IMAGINARY (ω) PARTS OF s ARE THE 'x' and 'y' ON A GRAPH

- Example:
 - "Tent pole" plot of the |H(s)|
 magnitude of a
 Chebychev filter's
 response to inputs of
 complex frequency 's'
 - ω is what you usually think of as 'radian frequency' (ω=2πf)
 - $-\sigma$ is decay rate*

*: Not important for EE122, but used in stability analysis



Why should I use the s-plane? THIS IS THE SAME QUESTION AS: 'WHY IS THE LAPLACE TRANSFORM USEFUL?'

• Turns differential equations (hard) into algebraic equations (easy) $Av_{out}(t) + B dv_{out}/dt = Cv_{in}(t) \Leftrightarrow (A+sB)v_{out} = Cv_{in}$

$$\frac{v_{out}}{v_{in}} = H(s) = \frac{C}{A + sB}$$

 Turns convolution (hard) into multiplication (easy)

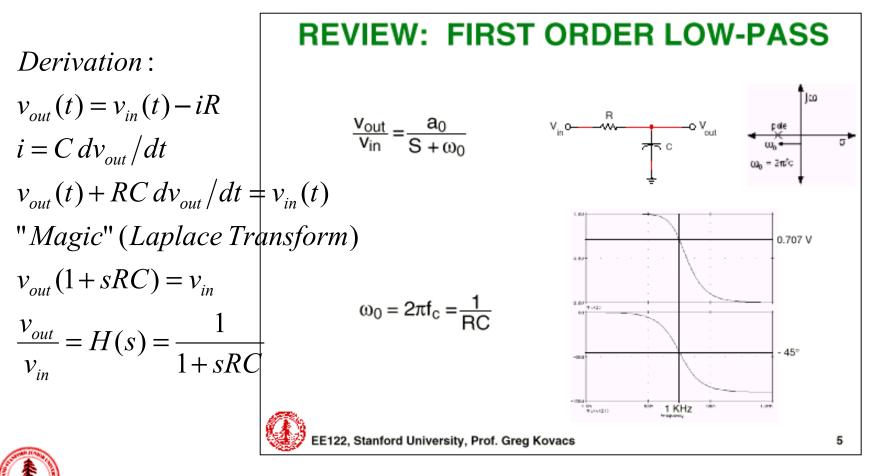
$$f(t) * h(t) = g(t) \Leftrightarrow F(s)H(s) = G(s)$$

How to use s-plane analysis

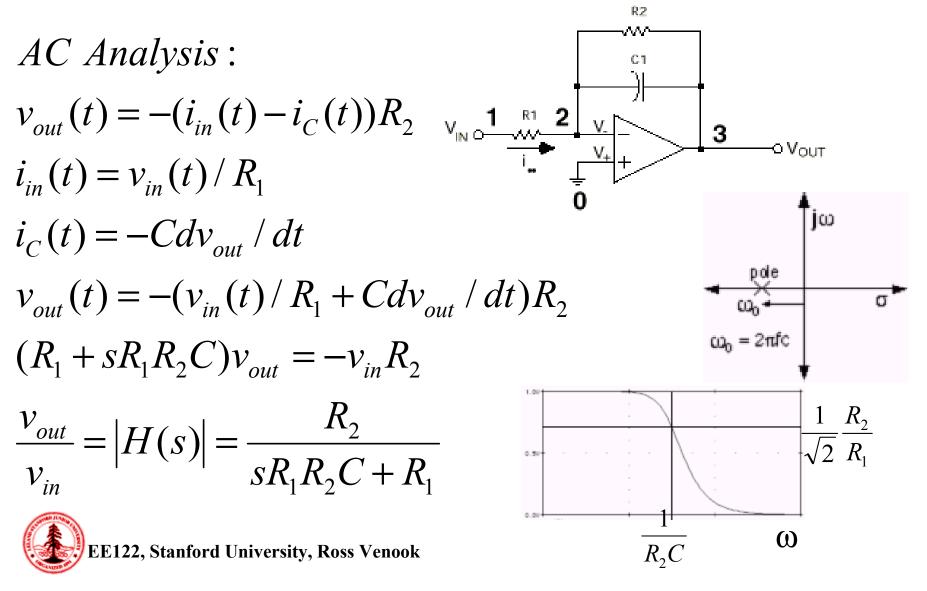
- Examples to follow:
 - Systems
 - Simple RC circuit
 - Integrator
 - Signals
 - Multiplication by a sinusoid: "Heterodyning"

RC circuit (simple)

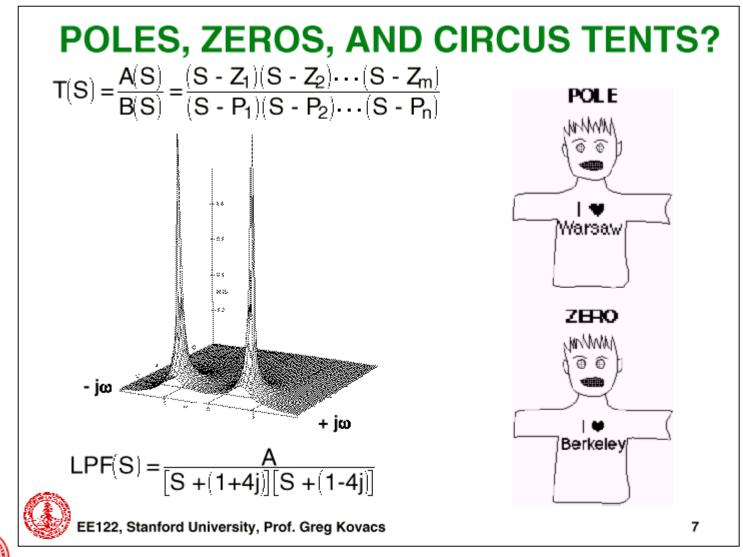
Straight from EE122 lecture notes:



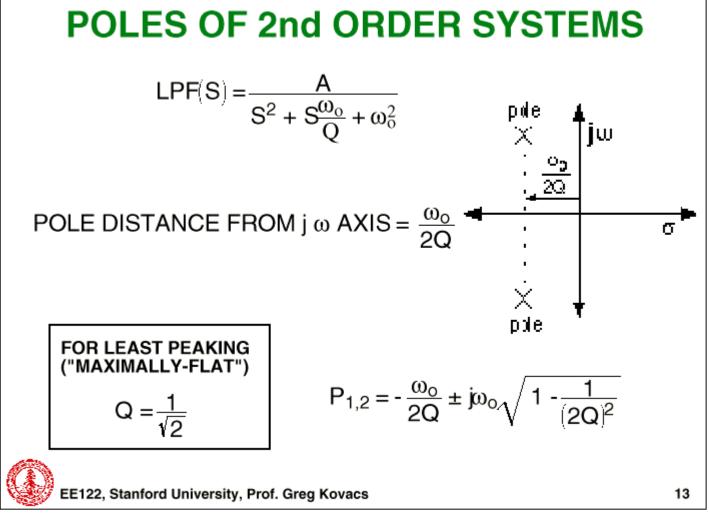
Integrator (slightly less simple)



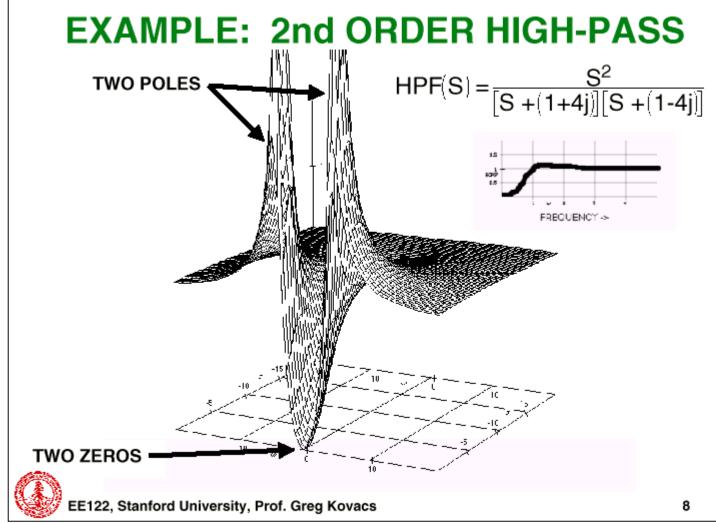
A familiar slide



Another familiar slide...



A last familiar slide



Heterodyning (for FM radio)

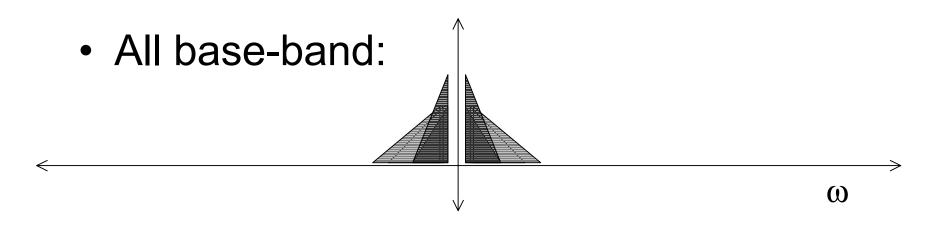
- Motivation: "Base-band" txn is trouble
 - Efficiency
 - $\lambda/4$ Antenna for kHz ~ length > kilometers
 - Interference
 - All of the signals would muddle together
 - Hence, we need distinct 'carrier frequencies' (regulated by the FCC)
 - 92.3 MHz (KSJO)88.5 MHz (KQED)

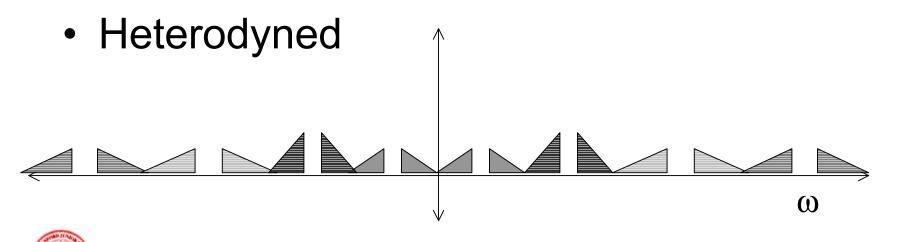
 - 1070 kHz (KNX)
 - 710 kHz (KABC)

122, Stanford University, Ross Venook

FM

The "frequency domain"





Back to heterodyning

Because convolution in the time domain is multiplication in the frequency domain, when we multiply by a sinusoid in the time domain, it convolves the frequency content of our signal up to the frequency of the sinusoid. (Whew! That was a mouthful)

